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Abstract

Approximate dynamic boundary conditions of different orders are derived for the case of a thin piezoelectric coating
layer bonded to an elastic material. The approximate boundary conditions are derived using series expansions of the
elastic displacements and the electric potential in the thickness coordinate of the layer. All the expansion functions are
then eliminated with the aid of the equations of motion and boundary/interface conditions of the layer. This results in
boundary conditions on the elastic material that may be truncated to different orders in the thickness of the layer to
obtain approximate boundary conditions. The approximate boundary conditions may be used as a replacement for the
piezoelectric layer and thus simplify the analysis significantly. Numerical examples show that the approximate
boundary conditions give good results for low frequencies and/or thin piezoelectric layers.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, our attention is focused on the approximation of thin piezoelectric layers perfectly bonded
to elastic non-piezoelectric materials. Piezoelectric materials are commonly used in actuators and/or sensors
in a number of applications. Traditional applications are, for example, ultrasonic transducers and more
modern ones are integration of the sensors/actuators directly into the structure. The goal in the latter case
may be to obtain vibration control. Often, the piezoelectric element is in the form of a thin plate, that is, the
thickness of the piezoelectric material is much smaller than the wavelength of the elastic waves. This and the
fact that the governing equations are fairly complicated (see the textbooks by Auld (1990) and Tiersten
(1969) for the general three-dimensional theory) makes it attractive to approximate these layers in a simple
fashion.

In the case of thin piezoelectric layers, various plate theories are often used. In the recent review
article by Gopinathan et al. (2000), comparisons are made between the classical laminate theory and exact
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three-dimensional solutions for a piezoelectric laminated beam. Several plate and shell theories for layered
structures are also cited by Gopinathan et al. (2000). The finite element method (FEM) is developed for
such problem by, for example, Tzou (1993) and Kim et al. (1996). Higher order piezoelectric plate theories
and their applications are discussed in the recent review article by Wang and Yang (2000). Simplified
equations of motion in thin piezoelectric coating layers are considered by, for example, Batra et al. (1996).
Batra et al. (1996) consider a laminated plate with piezoelectric coatings which are approximated by a two-
dimensional theory due to Tiersten (1993). A very similar problem using three-dimensional theory is
considered by Gao et al. (1998).

In this paper, instead of using a plate theory, the thin piezoelectric layer is replaced by an approximate
(or effective) boundary condition. The major benefit with this approach compared to using a plate theory is
that no solution in the piezoelectric layer is needed at all. This could be particularly useful in FEM ap-
plications if the code do not include the option of piezoelectric materials. Approximate boundary and
interface conditions have been considered by many authors in, for example, acoustics (Bovik, 1994),
electromagnetics (Ammari and He, 1997; Idemen, 1988), and elastodynamics (Bovik, 1994; Niklasson et al.,
2000a,b; Rokhlin and Huang, 1993). Bovik (1994) and Niklasson et al. (2000a,b), use series expansions of
the fields through the thickness of the thin layer. By using the boundary and interface conditions together
with the equations of motion of the thin layer, approximate boundary conditions are obtained by trun-
cating the series. A similar technique based on series expansions of the fields is used by Ammari and He
(1997). Rokhlin and Huang (1993) derive the transfer matrix of the layer and obtain approximate interface
conditions by truncating a series expansion in the thickness / of the matrix. Even though the approach used
by Rokhlin and Huang (1993) is somewhat different from the approach used by Niklasson et al. (2000b),
the resulting interface conditions are identical. The technique used in the present paper is also based on
series expansions of the fields through the thickness but is somewhat different from the approaches used by
Bovik (1994) and Niklasson et al. (2000a,b).

The layout of the paper is as follows. In the next section, the basic equations governing wave pro-
pagation in piezoelectric materials are given. In Section 3, the derivation of the effective boundary con-
ditions for a thin piezoelectric coating layer is presented. A technique previously used in the derivation of
plate equations (Bostrom et al., 2001; Johansson, 1999) is employed. In Section 3.1, effective boundary
conditions are derived for the one-dimensional case. Both the case when waves are excited normally to the
interface by an electric voltage (actuator mode) and the case when the electric voltage is excited by an
elastic wave of normal incidence (sensor mode) are considered. In Section 3.2, effective boundary con-
ditions are derived for the two-dimensional case when the piezoelectric layer is acting as an actuator. The
boundary conditions are truncated to different orders and used in some numerical examples presented in
Section 4. In Section 4.1, one-dimensional cases with a coated isotropic half-space where the layer is
acting as an actuator or sensor are presented. Here, the amplitude of the induced wave (actuator mode)
and the amplitude of the induced voltage difference (sensor mode) are studied. In Section 4.2, the two-
dimensional boundary conditions are used for a coated isotropic plate. Here, the propagation of guided
in-plane (P-SV) waves in the layered plate is considered. In all numerical examples (both one-dimensional
and two-dimensional), the solutions obtained from the approximate boundary conditions are compared
with the exact solutions.

2. Basic equations

The motion of a piezoelectric material is governed by the three-dimensional stress equations of motion
and the charge equation of electrostatics:

Ty = puj, D;; =0, (1)
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where Tj;, u; and D; are the components of stress, mechanical displacement and electric displacement, res-
pectively. p is the mass density, the summation convention is employed, and dot denotes differentiation with
respect to time. The constitutive equations for a piezoelectric material are

Tij = cimSu — ewjLr, D = ewSu + enky, (2)

where ¢, er; and e are the components of elastic stiffness, piezoelectric coupling and dielectric permit-
tivity, respectively. Sy, and E; are the components of strain and electric field and may be expressed in terms
of the elastic displacement #; and the electric potential @ by

1
Sy =7y tuy), E=-9, 3)
where the quasi-static approximation has been used for the electric field. Combining Eqgs. (1)-(3), the

equations of motion and the charge equation of electrostatics may be written as
Cijiltii + € P = pity, ety ;i — €x P = 0. 4)

The piezoelectric layer, in this paper, is made of a hexagonal crystal of the class Cg, = 6mm. If Voigt’s
abbreviated notation (Auld, 1990; Tiersten, 1969) is used, the material constants appearing in the con-
stitutive equations (2) of this transversely isotropic material may be written as

i1 C12 Ci13 0 0 0
Ciz C11 Ci13 0 0 0

0 0 0
ez 3 o o | C66:§(C“_Clz)’ (5a)
0

p—

[CU] - 0 0 0 C44 0
0 0 0 0 Cq4
0 0 0 0 0 Ce6

0 0 0 0 es5 0
le]=( 0 0 0 es 0 0], (5b)
0

ey ey en 0 0

€11 0 0
] =1 0 en 0 ). (5¢)
0 0 €33

3. Approximate boundary conditions

In this section three different cases are considered. The first is an one-dimensional case, where the piezo-
electric layer is acting as an actuator and the second, which is also one-dimensional, is when the piezo-
electric layer is acting as a sensor. Finally, a two-dimensional actuator case is considered. Approximate
boundary conditions are derived for these three cases and will significantly reduce the complexity of the
problems where they may replace the piezoelectric layers.

In the cases considered below, the piezoelectric layer (thickness #) is oriented such that the z-direction is
normal to the layer and the xy-plane is chosen as the plane of isotropy of the transversely isotropic 6mm
material (see Fig. 1). The piezoelectric strip is covered with silver electrodes on both sides. The silver
electrodes are assumed to be of infinite conductivity and thin enough not to influence the mechanical
behavior of the piezoelectric material. The piezoelectric material is assumed to be perfectly bonded to an
elastic material as depicted in Fig. 1.
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Fig. 1. A piezoelectric layer of thickness 4 perfectly bonded to an elastic material.

3.1. One-dimensional cases

Assume that all fields are independent of x and y and that the displacement components in the x- and
y-directions are zero. The equation of motion and the charge equation for this one-dimensional case are
then obtained from Eq. (4) as

w33+ en®i = pw, (6a)

exws; — e3P 33 =0, (6b)

where w is the displacement in the z-direction. The constitutive equations for the one-dimensional case are
obtained from Eq. (2) as

T3z = c3wz +en®s, (7a)
Ds =enws — e3P 3. (7b)

The displacement and the electric potential in the piezoelectric layer are expanded in the thickness coor-
dinate as

w = Z W]'Zj, (88')
j=0

b= o7 (8b)
j=0

Inserting the series expansions Eq. (8) into Eq. (6b) immediately gives

€33

="y, j=23,... 9)
€33

J 7

Further, elimination of the electric potential in Eq. (6) results in a partial differential equation in w:
Ow_plw_, (10)

where the piezoelectric effect gives rise to a stiffened elastic constant ¢ = ¢33 + €3,/ €33.
If the series expansion Eq. (8a) is inserted into Eq. (10) and every order of z is put equal to zero, the
following relations are obtained:

o 1 p jaZjWO N 1 p /azjw1 =12 (11)
YT )\e) o T T i+ i\e) o
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Now, only four unknowns remain in the series expansions (wy, w;, @y, and @) and they will be determined
by using the boundary conditions. It has to be decided if the piezoelectric layer should act as an actuator or
a sensor. Both cases will be discussed starting with the case of an actuator.

3.1.1. Actuator case
The boundary conditions for the actuator case, with the interface between the two materials at z = 0 (see
Fig. 1), are

z=h: q§:V17 T33:07 (1221)
z=0: &=V, TIn=10, w=wn, (12b)

where w* and T3 are the displacement and stress of the elastic material, respectively. V; and ¥ are voltages
applied to the electrodes at z = 0 and z = A, respectively.
It is now easy to see that the boundary conditions at z = 0 immediately give

Dy =Ty, wo=w (13)

and therefore only two unknowns remain to be determined. From the condition that ® = V] at z = h, the
series expansion of @ gives

Vl e o p2-1 jaZj 633 0 j /62/'
(e () e |2 S () S 1

j=1 Jj=1

where Egs. (9) and (11) have been used. By using the result for @, in the boundary condition 73; = 0 at
z = h, the following is obtained for wy:

I R WA AN
c33+z<c 2/ +1) 633)(2j)! c) o |

h ;(C 2j)en ) @j—D\e) o " (15)

At z = 0 the elastic stress T;; reduces to T5; = c33w; + e33P;. If @, is inserted into this expression, 75, may be

written as
2 2 ISy 2j-1 i a
33 h p\ o7 e L ANl
- == e r - | = = | — (v, 16
A Gy (c) o | ™! 633;(2]')! ¢) o | (16)

=1

es(V1 — 1)
h

e
T33 -

where w) is given by Eq. (15). It should be noted that so far no truncations have been made to the series
expansions. The approximate boundary conditions are now obtained as truncations for different orders of
h.

The three lowest order approximate boundary conditions obtained from Egs. (15) and (16) by truncation
of the series expansion are

First:

Il
e

o 623 (

T;@ ph atz

N—="n)—-w, =z (17)
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Second:
2 a e 62 e

6033"‘,0h 2"‘ oyl T33_3,0h62[€3%(V1—Vo)—2033W]7 z=0. (18)
Third:

_ i .

24 4 2 T3,

L C’;3 + ph ( + ) at2:|

o? ph? &? ) 0] .
=phs, {e” [12+ = 2}(1/1 Vo) — [24C33 +2ph2<1 + 33) 5 2] ] z=0. (19)

These three different order of truncation will be used in numerical calculations in a subsequent section to
show the limitations of the approximate boundary conditions. It should be noted that it is straightforward
to derive higher order approximate boundary conditions even though this is not done here.

3.1.2. Sensor case
The same configuration as in the actuator case above is used but the boundary conditions for this case
are

z="h: D3 = 0, T33 = 07 (208.)

z=0: D3:0, T33:T3e3, w=n’. (20b)

The only difference from the actuator case is that the electrical boundary conditions are changed to re-
strictions on the electric displacement instead of the electric potential. The reason why D; =0 at the
boundaries is that the piezoelectric layer is assumed to be bonded with silver electrodes with infinite
conductivity.

The boundary conditions on the surface z = 0 immediately give for the displacement that

wy = w° (21)

and thus leaves only three unknowns to be determined. Note that even though there are four boundary
conditions left, this will not be a problem since the two conditions on the electrical displacement yields the
same relationship between @, and wy. From D; = 0 at z = 0 it follows that

‘pl = @wl (22)

€33

and it is also easy to see, if (9) is used, that the boundary condition D; = 0 at z = & gives the same relation.
Inserted into the expression for 733, Eq. (7a), at z = 0, the resulting stress boundary condition is

T33 =cw = T13> z=0. (23)

This means that the only unknown left to be determined is wy. This can be done by using the stress
boundary condition at z = A, and the result is

B <p)j 0¥ o p2i-1 <p>f 0¥
- — | W] = — e - — [ Wp. (24
[]ZO ¢) o | ; 2j—1\ec) a | )
If this is inserted into the stress boundary condition at z = 0, Eq. (23), the following relation for the elastic
stress Ty, is obtained:



G. Johansson, A.J. Niklasson | International Journal of Solids and Structures 40 (2003) 3477-3492 3483

li g (6) GQ]TBZ_C[;?%(%)?TZ]W’ (25)

j=0

where the relation wy = w® also has been used. It should be noted, as in the actuator case, that so far no

truncations have been made to the series expansions. But now, when the final expression for the elastic

stress at the interface between the piezoelectric layer and the elastic material has been obtained, it may be

truncated to obtain approximate boundary conditions at different orders.
To the lowest order of truncation of Eq. (25), the approximate boundary condition for the sensor case is
aZWe

T =—-ph—, z=0. 26

33 P50 (26)

It is noted that to the lowest order, only the inertia of the piezoelectric layer is taken into account. The
second lowest order of truncation of Eq. (25) yields the approximate boundary condition

ph? oPwe

[2+ — 5 2=0. (27)

} Ty = —2ph—-

where now the elastic and electric properties of the layer appear in ¢. The third lowest order of truncation of
Eq. (25) yields the following approximate boundary condition:

3h%p . o2 Wp 7 .
[6+ - a—ﬂ}Tﬁ_ hat2{6+7@]w z=0. (28)

The desired output in the sensor case is the difference in voltage between the layer’s two surfaces. By using
Eqgs. (8), (9), (11), and (24), the following expression is obtained

SH ) w2 S 5@ 8]

j=0

The three lowest order truncations of Eq. (29) are

First:
B €33 hz P 62w° -
=" e 2l e o’ 0, (30)

Second

h* p % ey h? p O*w®

55@(%*%)**;355 0 z=0, (31)
Third:

hz p az b e hz p 62 h4 pz 64

— N -rvN))=—— - —+ — = — o =0. 32

oz | | 2w Tmew |V (32)

3.2. Two-dimensional actuator case

In this section the same analysis as in the one-dimensional case is performed for the two-dimensional
case. This means that the x-direction is also included in the calculations. Since the piezoelectric layer is
isotropic in the xy-plane it does not matter whether the x- or the y-coordinate is included. Also, only the
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actuator case will be treated in this section. Since the expressions obtained in the two-dimensional case are
much more complicated than in the one-dimensional case, most details are omitted in this section.

If it is assumed that all fields are independent of y and the displacement in the y-direction is zero, the
equations governing the motion of the piezoelectric layer are

o%u o*w o%u o*d *u

011@+(613 +C44)@+C44@+(615+€31)@:P¥, (33a)
o*w o%u o*w o*d o’ o*w

cuga Tlenten g g tonga tasgatengy =g (33b)
*w o%u O*w o’ 0P

e Testel gy tengy —agy —amgy =0 (33)

Here, u is the displacement in the x-direction and w is the displacement in the z-direction. The relevant
constitutive equations in this case are

ow  Ou 0P
T31:C44<a+§>+61sa7 (34a)
ow 0P

(34b)

u
T3 =c3—+c=—+en—.
33 By TNy, Teny,
The constitutive equations for the electrical displacements are not listed here as they are of no immediate
interest in the case of the actuator.
Next, series expansions of the displacements and the electrical potential in the piezoelectric layer are
introduced as

u:iujzj, w:iwjzj, d):id)jzj. (35)
j=0 j=0 Jj=0

Exactly as in the one-dimensional case, the series expansions are now inserted into the equations of motion
Eq. (33). By using these equations it is possible to eliminate all unknowns but the six of lowest order in the
series expansions (ug, wy, @, u;, w;, and @;). The remaining six unknowns will be determined by using the
boundary conditions for this problem. The boundary conditions are

z=h: (DZVI, T31:0, 7}320, (363)

z=0: o= V(), T31 :T;, T33:T§3, u:ue, W:We, (36b)

where u° and w® are the displacements in the x- and z-directions, respectively, of the elastic material. /5 and
11 are known electrical potentials and if the silver electrodes on the piezoelectric material are shorted, they
are equal and may be set to zero. This is done in the numerical examples in Section 4.2.

The six remaining unknown expansion functions (uy, wo, @y, u;, wi, and @) are determined from the
boundary conditions ® =V}, T3; =0, and 753 =0 atz=h and @ =V, u = u°, and w = w® at z = 0. When
this has been done, only two boundary conditions at z = 0 remain:

z=0: T31:T3el, T33:T3e3. (37)

At z=0, T3; and T3; from Eq. (34), with the series expansions inserted, may be written as

ow 0P
T3 =cu <u1 + 6x0) + 61567;’ (38a)
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6u0
T33 =C13 a —+ C33Wq + 633¢1. (38b)
By insertion of the already known expansion functions u,, wy, @y, u;, wy, and @, into Eq. (38) and

truncation to different orders, approximate boundary conditions are finally obtained from Eq. (37).
The lowest order approximate boundary conditions may be written as

. 13 0 62 cz 82 .

T31:<€31—€33C—33>a(Vl—V0)—h{/’@—<011—£ a2 u', z=0, (39a)
h o? o? g

T3 = e [(033631 - 013633)@4- 633,0@} " —=n) - h'OW’ z=0. (39b)

The lowest order approximate boundary conditions, Eq. (39), are obtained by neglecting all terms of order
higher than 4. It is easy to see that if the x-dependence is omitted, the same equation as in the one-
dimensional case is obtained from Eq. (39b), cf. Eq. (17). The second lowest order approximate boundary
conditions are obtained by neglecting all terms of order higher than %2, and finally in the third order all
terms of order higher than #* are neglected. The second and third order approximate boundary conditions
are not shown explicitly here for brevity, but they are discussed together with some numerical examples in
Section 4. These higher order approximate boundary conditions are derived with the aid of the program
Mathematica (Wolfram, 1999) since the expressions get rather complicated.

4. Numerical examples

In this section, numerical examples are given for one-dimensional sensor and actuator cases and for two-
dimensional guided waves in a layered plate. The approximate boundary conditions derived in Section 3 are
used to obtain approximate solutions. Different order of truncation of the effective boundary conditions are
compared to each other as well as to the corresponding exact solutions. The main goal here is to investigate
the validity of the approximations.

In all the examples below, the piezoelectric material is taken as PZT-2 (lead zirconate titanate) and the
isotropic material is steel. The material properties of PZT-2 (class 6mm with the xy-plane as the plane of
isotropy) are given in Table 1 (Auld, 1990). The Lamé constants of the isotropic steel are A = 121 GPa,
u = 80.8 GPa (or Young’s modulus £ = 210 GPa and Poisson’s ratio v = 0.3) and the density is p* = 7870
kg/m?.

4.1. One-dimensional cases

In this section some numerical results for the one-dimensional sensor and actuator cases are presented.
Below, all fields are assumed to be time harmonic with the time dependence exp(—iwt¢). The factor
exp(—iwt) is, however, suppressed throughout. Different order of approximate boundary conditions are
used in a simple actuator and sensor example to show their limitations.

Table 1
Material properties of PZT-2 (c;; in GPa, e; in C/m?, ¢y = 8.854 x 1072 C/Vm, and p in kg/m?)

€11 C12 C13 C33 Ca4 eis €3] €33 fn/eo 533/60 14
135 67.0 68.1 113 22.2 9.8 -1.9 9.0 540 260 7600
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(a) Actuator case. (b) Sensor case.

Fig. 2. A piezoelectric layer of thickness / acting as an actuator or a sensor.

4.1.1. Actuator case

Fig. 2(a) shows an isotropic half-space coated by a piezoelectric layer of thickness /. A plane elastic wave
is induced in the half-space by applying a voltage @ = V] to the upper (free) surface z = 4 of the layer and a
voltage @ = ¥} to the lower surface z = 0 of the layer. In this section, the amplitude of the transmitted wave
(w® in the figure) obtained from the exact solution is compared to the amplitude obtained when the layer is
replaced by approximate boundary conditions of different orders.

The difference between the voltages at the layer’s surfaces, 7 — V;, is assumed to be

Vi — Vo =AV. (40)
The equations governing one-dimensional (time harmonic) motion in the isotropic half-space are

0Ty o 2 e . \ on®
6—Z33+p 0w =0, T5=(1+2u) % (41)

From Eq. (41) and radiation conditions at infinity, the total displacement field in the isotropic half-space is
we = Aze‘ik—fz, (42)

where the wavenumber in the elastic half-space £ is given by

p°
K=y [——. 43
F= oV (43)

Note that the displacement field in the isotropic half-space consists of the transmitted field only, i.e., a plane
wave propagating in the negative z-direction.

In order to obtain the exact solution, i.e., the exact expression for 4,, the displacement field and potential
in the piezoelectric layer are obtained from Egs. (6b) and (10), assuming time harmonic conditions, as

w = Aleikzz —+ Bleiik‘»z, (44)
&=L 1Czt0, (45)
€33

where k. is the wavenumber in the piezoelectric layer, i.e.,

k= w\fg (46)

The constants 4, By, 4>, Cy, and C, are determined by the actuator case boundary conditions Eq. (12). The
expression for the exact amplitude of the transmitted wave, 4,, is given by
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-1

exs . ck.h (@ (1— e ) — (A+20)k)  exs, _yn iek.h .,
A, = |21 — k.h) — k.h - (e 1)+ ——e™™ AV.
2 [ 1(633 Sln( ) €33 COS( )> 2Ckz(1 — COS(kzh)) + €33 (e ) + €33 ©

(47)

Insertion of Egs. (40) and (42) into the approximate boundary condition of lowest order (17) results in the
approximation

633E‘hk22

A, =
> ey (chk? + ke (7 + 2u))

AV, (48)

If the second lowest order boundary condition Eq. (18) is used, the result is

A — 36335‘/’!/(22
27 6eyschk? + ke (7 + 2u) (633 — h2k2(22 + ¢33))

AV, (49)
Finally, if Egs. (40) and (42) are inserted into the approximate boundary condition of the third order Eq.
(19), the resulting amplitude 4, is

. @33E‘hk22(12 — thZZ)
T 2ehk2(12¢3; — WK (C + c33)) + 4ike (7 + 2p0) (6¢33 — 2k2(2C + c33))

A AV (50)

If Eq. (47) is rewritten and the numerator and denominator are series expanded, truncations yield the
approximate expressions Egs. (48)-(50).

The amplitude of the wave generated in the half-space, 4,, for the actuator case is shown in Fig. 3.
ay = \/c33/€33 A2/ AV is plotted as a function of k.4 in polar form, i.e., ay = |ay| exp(iarg(a,)) with |ay| in
Fig. 3(a) and arg(a,) in Fig. 3(b). The exact solution is shown together with the three lowest order of
approximations derived above. As is seen in the figure, the amplitude obtained from the first (lowest)
approximate boundary condition, Eq. (48), is only in good agreement with the exact amplitude when
k.h < 0.3. It is also seen that the phase is in better agreement than the absolute value. The second and third
approximate boundary conditions, Egs. (49) and (50), offer significant improvements. The absolute value of
the amplitudes are in very good agreement with the exact one when k.4 < 1. The phase of the second order
approximation, Eq. (49), starts to break down much earlier than the phase of the third order approxi-
mation, Eq. (50), (see Fig. 3(b)). From the figure, it is seen that the second order approximation starts to
break down when k.4 =~ 0.5 and the third order approximation when .z =~ 1.

0.4 05 - =
— Exact - Exact
0.35[ --- First order - First order
0all = Second order O - Second order
’ Third order Third order
0.25 (X
& 0.2 S
) g0
0.15 s -1 >
0.1 -
0.05
O -2
0 0.25 0.5 0.75 1 1.25 1.5 0 0.25 0.5 0.75 1 1.25 1.5
k.h k.h
(a) The absolute value of as. (b) The phase of ay.

Fig. 3. The absolute value and phase of a, = \/c33/€e33 42/AV.
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4.1.2. Sensor case

Here, the same configuration as in the previous subsection is considered but instead of inducing a wave
in the isotropic half-space by applying voltages to the layer’s surfaces, a plane wave incident in the half-
space (w™) is inducing a difference in the voltages ¥, and J; (see Fig. 2(b)). Comparisons between
AV = V| — V}, obtained from the exact solution and approximate boundary conditions of various orders are
made.

The displacement field in the elastic half-space may be written as the sum of the incident wave and the
reflected wave as (see Eq. (41))

WS = Ao 4 Ape . (51)

The difference in the voltages AV = V; — V, will now be determined using the exact equations as well as
different orders of approximate boundary conditions.

As in the previous section, the displacement field and the electric potential in the piezoelectric layer are
obtained from Egs. (6b) and (10) as

w = A]eikzz 4+ B]eiikzz, (52)
o= Czt G, (53)
€33

The constants 4, By, 4,, C, and C, are determined by the sensor case boundary conditions Eq. (20). The
exact expression for AV is then given by

AV — 2e33(A + 2u)kE(1 — cos(k.h))
e33((A 4 2u)ke cos(k.h) — ick. sin(k.h))

Ao (54)

If Eq. (51) is inserted into the lowest order boundary condition, Eq. (26), and Eq. (30) is used, the difference
in the voltages, AV, is given by
€33 ()u + 2ﬂ)kzek22h2

AV = Ao, 55
exs((4+ 2u)ke — ick2h) 3)

The second lowest order boundary condition, Eq. (27), combined with the corresponding expression for
AV, Eq. (31), yield
o 2e33 (7 + 2u)ksk2h? p
" e ((A+ 2u)ke (2 — k2h2) — 2ick2h)

(56)

Finally, insertion of Eq. (51) into the third order boundary condition, Eq. (28), combined with Eq. (32)
result in the expression

exs (2 + 20kZH (12 — K2H°)

AV =3 B0+ 2u)ke(2 — I2h2) — iek2h(6 — k2h?))

Ay. (57)

It is easy to see that series expansions of the numerator and denominator in Eq. (54) and truncation to
different orders result in the approximate expressions Eqgs. (55)-(57).

In Fig. 4, the absolute value and phase of Av = /€33/c33 AV /A4,y are shown as a functions of k4. The
same conclusions may be drawn from Figs. 3 and 4, the first approximation is valid up to k.4 =~ 0.3, the
second order up to k.4 =~ 0.5, and the third order up to k.4 ~ 1.
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Fig. 4. The absolute value and phase of Av = \/e33/c33 AV /Ay.

4.2. Two-dimensional case

In this section the two-dimensional approximate boundary conditions are evaluated. The calculations
are made for the case when two plates, one piezoelectric and one elastic, are perfectly bonded to each other.
Dispersion relations are calculated for different order of truncations when the electrodes are shorted, i.e.,
Vo = V1 = 0 (see Fig. 5). They are then compared to the exact solution, which is obtained from the two-
dimensional equations of piezoelectricity and elasticity. The thickness ratio of the piezoelectric layer and
the elastic plate is varied in order to show the limitations of the approximate boundary conditions.

The dispersion relation for the exact case is obtained by using the two-dimensional equations of motion,
Eq. (33), combined with the two-dimensional elastic equations of motion and the boundary/interface
conditions appropriate for this case. The equations of motion and constitutive relations for in-plane motion
of an isotropic, homogeneous elastic material are

oy oTy _ [Pwe 8Ty Ty 0w

—— = —— 58
x " P a e Fae (582)
. , ous  owt e (0u  Ownf . ouf on®

Tll—(ﬂ+2ﬂ)a+ﬂg7 T3l—,u< az+ 6x>7 Ty =4 ax—i—(xl—}—Z,u) % (58b)

u* is the displacement in the x-direction and w* is the displacement in the z-direction in the elastic material.
A and p are the Lamé constants. The boundary conditions governing this case are

z=h: T31:0, T33:O, QZO, (593)
z=0: Ty=Ty In=T; @=0, u=u", w=w (59b)
z
o=0
\ h
o=0 - ®
X y
H

Fig. 5. A piezoelectric layer with shorted electrodes perfectly bonded to an elastic plate.
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z=—H-h): T;=0, T;=0. (59¢)
Briefly, the exact dispersion relation is obtained as follows. First, general solutions are obtained in the
piezoelectric and elastic layers from Eqgs. (33) and (58), respectively, assuming that all fields are in the form
F(z) exp(i(k,x — wt)). Then, the boundary and interface conditions Eq. (59) yield a homogeneous system of
equations for the unknown integration constants of the layers. The requirement that a non-trivial solution
should exist, i.e., that the determinant of the system matrix is zero, yields the exact dispersion relation.
When using the approximate boundary conditions, the piezoelectric layer is reduced to two approximate
boundary conditions that are applied to the elastic material. By doing this, the problem is reduced to
solving the equations of motion in the elastic plate, Eq. (58a), together with the boundary conditions

z=0: T5 =T, Tg=T5, (60a)

z=—H-h): T;=0, T;=0. (60b)
Above, T and T5if are the approximate boundary conditions replacing the piezoelectric layer with
Vo = V1 = 0 in this case. The lowest order approximate boundary conditions for the two-dimensional case
are given by Eq. (39). To obtain the dispersion relation, the procedure is the same as in the exact case. First,
a general solution is obtained in the elastic plate assuming that all fields are in the form
F(z) exp(i(kx — wt)). When the general solution is inserted into the boundary conditions (60), the result is a
homogeneous system of equations for the integration constants. The requirement that a non-trivial solution
should exist, yields the dispersion relation.

In Fig. 6, the dispersion curves when & = 0.1H are shown. Here it can be seen that even the first order
approximation is in excellent agreement with the exact solution for the first mode. For the second mode, the
first approximation is very good up to k.H = 3 (k.4 = 0.3) but the second and third order approximation is
very good in the whole interval. All approximate solutions capture the cut-off frequency of the third mode
well, but the first and second order approximations are clearly not as good as the third order approximation
at higher frequencies.

In Fig. 7, h = 0.2H, which makes the influence from the piezoelectric material greater and therefore the
results in this case are not expected to be as good as they are in Fig. 6. For the first mode it can be seen that
the first order approximation is very good up to at least k,H = 3 (k.4 = 0.6). The third order approximation
is very good in the whole interval. For the second mode the first approximation is good up to k., H = 1.75
(k.h = 0.35), while the second approximation matches the exact curve well up to k. H = 2.25 (k.h = 0.45).

6 T T T - T - T T
— Exact B

5511 - - - First order L

5H == Second order s ’,»_,.»’_
asp” Third order //::__/,

4t i =
3.5¢ ,,;:-i’ /,,,—"
2.5¢

2.
1.5¢

1_
0.51

0 . . . . "

0 05 1 15 2 25 3 35 4 45 5
ko H

Fig. 6. Dispersion curves when # = 0.1H.
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Fig. 7. Dispersion curves when 4 = 0.2H.

The third order approximation is very good in the whole interval. For the third mode it is seen that the first
approximation results in a fairly large error in the cut-off frequency and this is the case for the second and
third approximations as well, even if the errors are much smaller than the error in the first approximation.
The main reason for these relatively large errors in the third mode is that a significant portion of the plate is
modeled by the approximate boundary conditions, which are similar to using a plate theory. In order to
model the third mode more accurately, higher order approximate boundary conditions than the ones
considered in this paper should be used. See Bostrom et al. (2001) and Johansson (1999) for more thorough
discussions on higher order plate theory using derivation techniques similar to the one used in this paper.

Finally note that the main reason why the approximations appear to be much better when # = 0.1H than
when 4 = 0.2H for all modes is the scaling of the axes in Figs. 6 and 7. If the dispersion curves are viewed as
k.h versus k.h instead of k. H versus k.H, the approximations are about as good in both cases (2 = 0.1H and
h=0.2H).

5. Conclusions

This paper has been discussing the derivation of approximate boundary conditions for a thin piezo-
electric layer. The derivation is performed by expanding the displacement and electric potential in power
series in the thickness coordinate. The displacement and potential are then inserted into the equations of
motion and the boundary conditions. From the equations of motion, unknown variables are eliminated.
Then the boundary conditions are used to eliminate further unknowns and finally a set of approximate
boundary conditions remains. This has been performed for both one-dimensional and two-dimensional
cases. The one-dimensional approximate boundary conditions have been developed both for a piezoelectric
actuator and a piezoelectric sensor.

The one-dimensional piezoelectric actuator placed on an isotropic half-space is considered in the first
numerical example. An elastic wave is induced in the half-space by applying a voltage difference to the
piezoelectric layer. The second numerical example is the one-dimensional piezoelectric sensor which also is
placed on an isotropic half-space. The difference between this case and the previous is that there is no
applied voltage. Instead there is an incident wave in the half-space that is inducing a voltage jump in the
piezoelectric layer. The third numerical example shows the dispersion curves obtained from using the two-
dimensional approximate boundary conditions. Here, a thin piezoelectric layer with shorted electrodes is
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perfectly bonded to an elastic plate. The dispersion curves are calculated for different thickness ratios of the
piezoelectric layer and the elastic plate.

The numerical examples show the limitations of the approximate boundary conditions. It is shown that
the first order approximate boundary condition is good at low frequencies and thin piezoelectric layers, i.e.,
thin compared to the wavelength in the layer. Since many industrial applications are concerned with thin
piezoelectric layers and low frequencies, the lowest order approximate boundary conditions determined in
this paper can be used to simplify the calculations greatly. At higher frequencies, the second and third order
approximate boundary conditions work better. They are, however, more complicated which reduces the
benefit in using them.

The greatest benefit of using these boundary conditions is that the system of equations that needs to be
solved is smaller since the piezoelectric layer is completely eliminated and replaced by a set of boundary
conditions. An interesting use of the approximate boundary conditions could be to implement them in
FEM programs without the capability to handle piezoelectric materials.
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