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Abstract

Approximate dynamic boundary conditions of different orders are derived for the case of a thin piezoelectric coating

layer bonded to an elastic material. The approximate boundary conditions are derived using series expansions of the

elastic displacements and the electric potential in the thickness coordinate of the layer. All the expansion functions are

then eliminated with the aid of the equations of motion and boundary/interface conditions of the layer. This results in

boundary conditions on the elastic material that may be truncated to different orders in the thickness of the layer to

obtain approximate boundary conditions. The approximate boundary conditions may be used as a replacement for the

piezoelectric layer and thus simplify the analysis significantly. Numerical examples show that the approximate

boundary conditions give good results for low frequencies and/or thin piezoelectric layers.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, our attention is focused on the approximation of thin piezoelectric layers perfectly bonded

to elastic non-piezoelectric materials. Piezoelectric materials are commonly used in actuators and/or sensors

in a number of applications. Traditional applications are, for example, ultrasonic transducers and more
modern ones are integration of the sensors/actuators directly into the structure. The goal in the latter case

may be to obtain vibration control. Often, the piezoelectric element is in the form of a thin plate, that is, the

thickness of the piezoelectric material is much smaller than the wavelength of the elastic waves. This and the

fact that the governing equations are fairly complicated (see the textbooks by Auld (1990) and Tiersten

(1969) for the general three-dimensional theory) makes it attractive to approximate these layers in a simple

fashion.

In the case of thin piezoelectric layers, various plate theories are often used. In the recent review

article by Gopinathan et al. (2000), comparisons are made between the classical laminate theory and exact
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three-dimensional solutions for a piezoelectric laminated beam. Several plate and shell theories for layered

structures are also cited by Gopinathan et al. (2000). The finite element method (FEM) is developed for

such problem by, for example, Tzou (1993) and Kim et al. (1996). Higher order piezoelectric plate theories

and their applications are discussed in the recent review article by Wang and Yang (2000). Simplified
equations of motion in thin piezoelectric coating layers are considered by, for example, Batra et al. (1996).

Batra et al. (1996) consider a laminated plate with piezoelectric coatings which are approximated by a two-

dimensional theory due to Tiersten (1993). A very similar problem using three-dimensional theory is

considered by Gao et al. (1998).

In this paper, instead of using a plate theory, the thin piezoelectric layer is replaced by an approximate

(or effective) boundary condition. The major benefit with this approach compared to using a plate theory is

that no solution in the piezoelectric layer is needed at all. This could be particularly useful in FEM ap-

plications if the code do not include the option of piezoelectric materials. Approximate boundary and
interface conditions have been considered by many authors in, for example, acoustics (B€oovik, 1994),

electromagnetics (Ammari and He, 1997; Idemen, 1988), and elastodynamics (B€oovik, 1994; Niklasson et al.,

2000a,b; Rokhlin and Huang, 1993). B€oovik (1994) and Niklasson et al. (2000a,b), use series expansions of

the fields through the thickness of the thin layer. By using the boundary and interface conditions together

with the equations of motion of the thin layer, approximate boundary conditions are obtained by trun-

cating the series. A similar technique based on series expansions of the fields is used by Ammari and He

(1997). Rokhlin and Huang (1993) derive the transfer matrix of the layer and obtain approximate interface

conditions by truncating a series expansion in the thickness h of the matrix. Even though the approach used
by Rokhlin and Huang (1993) is somewhat different from the approach used by Niklasson et al. (2000b),

the resulting interface conditions are identical. The technique used in the present paper is also based on

series expansions of the fields through the thickness but is somewhat different from the approaches used by

B€oovik (1994) and Niklasson et al. (2000a,b).

The layout of the paper is as follows. In the next section, the basic equations governing wave pro-

pagation in piezoelectric materials are given. In Section 3, the derivation of the effective boundary con-

ditions for a thin piezoelectric coating layer is presented. A technique previously used in the derivation of

plate equations (Bostr€oom et al., 2001; Johansson, 1999) is employed. In Section 3.1, effective boundary
conditions are derived for the one-dimensional case. Both the case when waves are excited normally to the

interface by an electric voltage (actuator mode) and the case when the electric voltage is excited by an

elastic wave of normal incidence (sensor mode) are considered. In Section 3.2, effective boundary con-

ditions are derived for the two-dimensional case when the piezoelectric layer is acting as an actuator. The

boundary conditions are truncated to different orders and used in some numerical examples presented in

Section 4. In Section 4.1, one-dimensional cases with a coated isotropic half-space where the layer is

acting as an actuator or sensor are presented. Here, the amplitude of the induced wave (actuator mode)

and the amplitude of the induced voltage difference (sensor mode) are studied. In Section 4.2, the two-
dimensional boundary conditions are used for a coated isotropic plate. Here, the propagation of guided

in-plane (P-SV) waves in the layered plate is considered. In all numerical examples (both one-dimensional

and two-dimensional), the solutions obtained from the approximate boundary conditions are compared

with the exact solutions.

2. Basic equations

The motion of a piezoelectric material is governed by the three-dimensional stress equations of motion

and the charge equation of electrostatics:

Tij;i ¼ q€uuj; Di;i ¼ 0; ð1Þ
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where Tij, uj and Di are the components of stress, mechanical displacement and electric displacement, res-

pectively. q is the mass density, the summation convention is employed, and dot denotes differentiation with

respect to time. The constitutive equations for a piezoelectric material are

Tij ¼ cijklSkl � ekijEk; Di ¼ eiklSkl þ �ikEk; ð2Þ

where cijkl, ekij and �ik are the components of elastic stiffness, piezoelectric coupling and dielectric permit-

tivity, respectively. Skl and Ek are the components of strain and electric field and may be expressed in terms

of the elastic displacement ui and the electric potential U by

Sij ¼
1

2
ðui;j þ uj;iÞ; Ei ¼ �U;i; ð3Þ

where the quasi-static approximation has been used for the electric field. Combining Eqs. (1)–(3), the

equations of motion and the charge equation of electrostatics may be written as

cijkluk;li þ ekijU;ki ¼ q€uuj; eikluk;li � �ikU;ki ¼ 0: ð4Þ

The piezoelectric layer, in this paper, is made of a hexagonal crystal of the class C6v ¼ 6mm. If Voigt�s
abbreviated notation (Auld, 1990; Tiersten, 1969) is used, the material constants appearing in the con-

stitutive equations (2) of this transversely isotropic material may be written as

½cIJ � ¼

c11 c12 c13 0 0 0

c12 c11 c13 0 0 0

c13 c13 c33 0 0 0
0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c66

0
BBBBBB@

1
CCCCCCA
; c66 ¼

1

2
ðc11 � c12Þ; ð5aÞ

½eiI � ¼
0 0 0 0 e15 0

0 0 0 e15 0 0
e31 e31 e33 0 0 0

0
@

1
A; ð5bÞ

½�ij� ¼
�11 0 0

0 �11 0

0 0 �33

0
@

1
A: ð5cÞ

3. Approximate boundary conditions

In this section three different cases are considered. The first is an one-dimensional case, where the piezo-
electric layer is acting as an actuator and the second, which is also one-dimensional, is when the piezo-

electric layer is acting as a sensor. Finally, a two-dimensional actuator case is considered. Approximate

boundary conditions are derived for these three cases and will significantly reduce the complexity of the

problems where they may replace the piezoelectric layers.

In the cases considered below, the piezoelectric layer (thickness h) is oriented such that the z-direction is

normal to the layer and the xy-plane is chosen as the plane of isotropy of the transversely isotropic 6mm
material (see Fig. 1). The piezoelectric strip is covered with silver electrodes on both sides. The silver

electrodes are assumed to be of infinite conductivity and thin enough not to influence the mechanical
behavior of the piezoelectric material. The piezoelectric material is assumed to be perfectly bonded to an

elastic material as depicted in Fig. 1.
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3.1. One-dimensional cases

Assume that all fields are independent of x and y and that the displacement components in the x- and
y-directions are zero. The equation of motion and the charge equation for this one-dimensional case are

then obtained from Eq. (4) as

c33w;33 þ e33U;33 ¼ q€ww; ð6aÞ

e33w;33 � �33U;33 ¼ 0; ð6bÞ
where w is the displacement in the z-direction. The constitutive equations for the one-dimensional case are

obtained from Eq. (2) as

T33 ¼ c33w;3 þ e33U;3; ð7aÞ

D3 ¼ e33w;3 � �33U;3: ð7bÞ
The displacement and the electric potential in the piezoelectric layer are expanded in the thickness coor-

dinate as

w ¼
X1
j¼0

wjzj; ð8aÞ

U ¼
X1
j¼0

Ujzj: ð8bÞ

Inserting the series expansions Eq. (8) into Eq. (6b) immediately gives

Uj ¼
e33
�33

wj; j ¼ 2; 3; . . . ð9Þ

Further, elimination of the electric potential in Eq. (6) results in a partial differential equation in w:

o2w
oz2

� q
�cc
o2w
ot2

¼ 0; ð10Þ

where the piezoelectric effect gives rise to a stiffened elastic constant �cc ¼ c33 þ e233=�33.
If the series expansion Eq. (8a) is inserted into Eq. (10) and every order of z is put equal to zero, the

following relations are obtained:

w2j ¼
1

ð2jÞ!
q
�cc

� 	j
o2jw0

ot2j
; w2jþ1 ¼

1

ð2jþ 1Þ!
q
�cc

� 	j
o2jw1

ot2j
; j ¼ 1; 2; . . . ð11Þ

h

z

x y

CIJ, eiI, εij,  ρ

Fig. 1. A piezoelectric layer of thickness h perfectly bonded to an elastic material.
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Now, only four unknowns remain in the series expansions (w0, w1, U0, and U1) and they will be determined

by using the boundary conditions. It has to be decided if the piezoelectric layer should act as an actuator or

a sensor. Both cases will be discussed starting with the case of an actuator.

3.1.1. Actuator case

The boundary conditions for the actuator case, with the interface between the two materials at z ¼ 0 (see

Fig. 1), are

z ¼ h : U ¼ V1; T33 ¼ 0; ð12aÞ

z ¼ 0 : U ¼ V0; T33 ¼ T e
33; w ¼ we; ð12bÞ

where we and T e
33 are the displacement and stress of the elastic material, respectively. V0 and V1 are voltages

applied to the electrodes at z ¼ 0 and z ¼ h, respectively.
It is now easy to see that the boundary conditions at z ¼ 0 immediately give

U0 ¼ V0; w0 ¼ we ð13Þ

and therefore only two unknowns remain to be determined. From the condition that U ¼ V1 at z ¼ h, the
series expansion of U gives

U1 ¼
V1 � V0

h
� e33

�33

X1
j¼1

h2j�1

ð2jÞ!
q
�cc

� 	j
o2j

ot2j

" #
we � e33

�33

X1
j¼1

h2j

ð2jþ 1Þ!
q
�cc

� 	j
o2j

ot2j

" #
w1; ð14Þ

where Eqs. (9) and (11) have been used. By using the result for U1 in the boundary condition T33 ¼ 0 at

z ¼ h, the following is obtained for w1:

c33

"
þ
X1
j¼1

�cc
�

� e233
ð2jþ 1Þ�33

	
h2j

ð2jÞ!
q
�cc

� 	j
o2j

ot2j

#
w1

¼ � e33ðV1 � V0Þ
h

�
X1
j¼1

�cc
�"

� e233
ð2jÞ�33

	
h2j�1

ð2j� 1Þ!
q
�cc

� 	j
o2j

ot2j

#
we: ð15Þ

At z ¼ 0 the elastic stress T e
33 reduces to T e

33 ¼ c33w1 þ e33U1. If U1 is inserted into this expression, T e
33 may be

written as

T e
33 ¼

e33ðV1 � V0Þ
h

þ c33

"
� e233

�33

X1
j¼1

h2j

ð2jþ 1Þ!
q
�cc

� 	j
o2j

ot2j

#
w1 �

e233
�33

X1
j¼1

h2j�1

ð2jÞ!
q
�cc

� 	j
o2j

ot2j

" #
we; ð16Þ

where w1 is given by Eq. (15). It should be noted that so far no truncations have been made to the series

expansions. The approximate boundary conditions are now obtained as truncations for different orders of

h.
The three lowest order approximate boundary conditions obtained from Eqs. (15) and (16) by truncation

of the series expansion are

First:

T e
33 ¼ qh

o2

ot2
e33
2c33

ðV1
�

� V0Þ � we



; z ¼ 0: ð17Þ
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Second:

6c33

�
þ qh2 2

�
þ c33

�cc

	
o2

ot2



T e
33 ¼ 3qh

o2

ot2
e33ðV1½ � V0Þ � 2c33we�; z ¼ 0: ð18Þ

Third:

24c33

�
þ 4qh2 2

�
þ c33

�cc

	
o2

ot2



T e
33

¼ qh
o2

ot2
e33 12

��
þ qh2

�cc
o2

ot2



ðV1 � V0Þ � 24c33

�
þ 2qh2 1

�
þ c33

�cc

	
o2

ot2



we



; z ¼ 0: ð19Þ

These three different order of truncation will be used in numerical calculations in a subsequent section to

show the limitations of the approximate boundary conditions. It should be noted that it is straightforward

to derive higher order approximate boundary conditions even though this is not done here.

3.1.2. Sensor case

The same configuration as in the actuator case above is used but the boundary conditions for this case

are

z ¼ h : D3 ¼ 0; T33 ¼ 0; ð20aÞ

z ¼ 0 : D3 ¼ 0; T33 ¼ T e
33; w ¼ we: ð20bÞ

The only difference from the actuator case is that the electrical boundary conditions are changed to re-
strictions on the electric displacement instead of the electric potential. The reason why D3 ¼ 0 at the

boundaries is that the piezoelectric layer is assumed to be bonded with silver electrodes with infinite

conductivity.

The boundary conditions on the surface z ¼ 0 immediately give for the displacement that

w0 ¼ we ð21Þ

and thus leaves only three unknowns to be determined. Note that even though there are four boundary

conditions left, this will not be a problem since the two conditions on the electrical displacement yields the

same relationship between U1 and w1. From D3 ¼ 0 at z ¼ 0 it follows that

U1 ¼
e33
�33

w1 ð22Þ

and it is also easy to see, if (9) is used, that the boundary condition D3 ¼ 0 at z ¼ h gives the same relation.

Inserted into the expression for T33, Eq. (7a), at z ¼ 0, the resulting stress boundary condition is

T33 ¼ �ccw1 ¼ T e
33; z ¼ 0: ð23Þ

This means that the only unknown left to be determined is w1. This can be done by using the stress

boundary condition at z ¼ h, and the result is

X1
j¼0

h2j

ð2jÞ!
q
�cc

� 	j
o2j

ot2j

" #
w1 ¼ �

X1
j¼1

h2j�1

ð2j� 1Þ!
q
�cc

� 	j
o2j

ot2j

" #
w0: ð24Þ

If this is inserted into the stress boundary condition at z ¼ 0, Eq. (23), the following relation for the elastic

stress T e
33 is obtained:
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X1
j¼0

h2j

ð2jÞ!
q
�cc

� 	j
o2j

ot2j

" #
T e
33 ¼ ��cc

X1
j¼1

h2j�1

ð2j� 1Þ!
q
�cc

� 	j
o2j

ot2j

" #
we; ð25Þ

where the relation w0 ¼ we also has been used. It should be noted, as in the actuator case, that so far no
truncations have been made to the series expansions. But now, when the final expression for the elastic

stress at the interface between the piezoelectric layer and the elastic material has been obtained, it may be

truncated to obtain approximate boundary conditions at different orders.

To the lowest order of truncation of Eq. (25), the approximate boundary condition for the sensor case is

T e
33 ¼ �qh

o2we

ot2
; z ¼ 0: ð26Þ

It is noted that to the lowest order, only the inertia of the piezoelectric layer is taken into account. The

second lowest order of truncation of Eq. (25) yields the approximate boundary condition

2

�
þ qh2

�cc
o2

ot2



T e
33 ¼ �2qh

o2we

ot2
; z ¼ 0; ð27Þ

where now the elastic and electric properties of the layer appear in �cc. The third lowest order of truncation of

Eq. (25) yields the following approximate boundary condition:

6

�
þ 3h2q

�cc
o2

ot2



T e
33 ¼ �qh

o2

ot2
6

�
þ h2q

�cc
o2

ot2



we; z ¼ 0: ð28Þ

The desired output in the sensor case is the difference in voltage between the layer�s two surfaces. By using

Eqs. (8), (9), (11), and (24), the following expression is obtained

X1
j¼0

h2j

ð2jÞ!
q
�cc

� 	j
o2j

ot2j

" #
ðV1 � V0Þ ¼ � e33

�33

X1
j¼1

h2j

ð2jÞ!
q
�cc

� 	j
o2j

ot2j

" #
we: ð29Þ

The three lowest order truncations of Eq. (29) are

First:

V1 � V0 ¼ � e33
�33

h2

2!

q
�cc
o2we

ot2
; z ¼ 0; ð30Þ

Second:

1

�
þ h2

2!

q
�cc

o2

ot2



ðV1 � V0Þ ¼ � e33

�33

h2

2!

q
�cc
o2we

ot2
; z ¼ 0; ð31Þ

Third:

1

�
þ h2

2!

q
�cc

o2

ot2



ðV1 � V0Þ ¼ � e33

�33

h2

2!

q
�cc

o2

ot2

�
þ h4

4!

q2

�cc2
o4

ot4



we; z ¼ 0: ð32Þ

3.2. Two-dimensional actuator case

In this section the same analysis as in the one-dimensional case is performed for the two-dimensional
case. This means that the x-direction is also included in the calculations. Since the piezoelectric layer is

isotropic in the xy-plane it does not matter whether the x- or the y-coordinate is included. Also, only the
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actuator case will be treated in this section. Since the expressions obtained in the two-dimensional case are

much more complicated than in the one-dimensional case, most details are omitted in this section.

If it is assumed that all fields are independent of y and the displacement in the y-direction is zero, the

equations governing the motion of the piezoelectric layer are

c11
o2u
ox2

þ ðc13 þ c44Þ
o2w
oxoz

þ c44
o2u
oz2

þ ðe15 þ e31Þ
o2U
oxoz

¼ q
o2u
ot2

; ð33aÞ

c44
o2w
ox2

þ ðc13 þ c44Þ
o2u
oxoz

þ c33
o2w
oz2

þ e15
o2U
ox2

þ e33
o2U
oz2

¼ q
o2w
ot2

; ð33bÞ

e15
o2w
ox2

þ ðe15 þ e31Þ
o2u
oxoz

þ e33
o2w
oz2

� �11
o2U
ox2

� �33
o2U
oz2

¼ 0: ð33cÞ

Here, u is the displacement in the x-direction and w is the displacement in the z-direction. The relevant

constitutive equations in this case are

T31 ¼ c44
ow
ox

�
þ ou

oz

	
þ e15

oU
ox

; ð34aÞ

T33 ¼ c13
ou
ox

þ c33
ow
oz

þ e33
oU
oz

: ð34bÞ

The constitutive equations for the electrical displacements are not listed here as they are of no immediate

interest in the case of the actuator.

Next, series expansions of the displacements and the electrical potential in the piezoelectric layer are

introduced as

u ¼
X1
j¼0

ujzj; w ¼
X1
j¼0

wjzj; U ¼
X1
j¼0

Ujzj: ð35Þ

Exactly as in the one-dimensional case, the series expansions are now inserted into the equations of motion

Eq. (33). By using these equations it is possible to eliminate all unknowns but the six of lowest order in the

series expansions (u0, w0, U0, u1, w1, and U1). The remaining six unknowns will be determined by using the

boundary conditions for this problem. The boundary conditions are

z ¼ h : U ¼ V1; T31 ¼ 0; T33 ¼ 0; ð36aÞ

z ¼ 0 : U ¼ V0; T31 ¼ T e
31; T33 ¼ T e

33; u ¼ ue; w ¼ we; ð36bÞ
where ue and we are the displacements in the x- and z-directions, respectively, of the elastic material. V0 and
V1 are known electrical potentials and if the silver electrodes on the piezoelectric material are shorted, they

are equal and may be set to zero. This is done in the numerical examples in Section 4.2.

The six remaining unknown expansion functions (u0, w0, U0, u1, w1, and U1) are determined from the

boundary conditions U ¼ V1, T31 ¼ 0, and T33 ¼ 0 at z ¼ h and U ¼ V0, u ¼ ue, and w ¼ we at z ¼ 0. When
this has been done, only two boundary conditions at z ¼ 0 remain:

z ¼ 0 : T31 ¼ T e
31; T33 ¼ T e

33: ð37Þ
At z ¼ 0, T31 and T33 from Eq. (34), with the series expansions inserted, may be written as

T31 ¼ c44 u1

�
þ ow0

ox

	
þ e15

oU0

ox
; ð38aÞ
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T33 ¼ c13
ou0
ox

þ c33w1 þ e33U1: ð38bÞ

By insertion of the already known expansion functions u0, w0, U0, u1, w1, and U1, into Eq. (38) and

truncation to different orders, approximate boundary conditions are finally obtained from Eq. (37).

The lowest order approximate boundary conditions may be written as

T e
31 ¼ e31

�
� e33

c13
c33

	
o

ox
ðV1 � V0Þ � h q

o2

ot2

�
� c11

�
� c213
c33

	
o2

ox2



ue; z ¼ 0; ð39aÞ

T e
33 ¼

h
2c33

c33e31ð
�

� c13e33Þ
o2

ox2
þ e33q

o2

ot2



ðV1 � V0Þ � hq

o2we

ot2
; z ¼ 0: ð39bÞ

The lowest order approximate boundary conditions, Eq. (39), are obtained by neglecting all terms of order

higher than h. It is easy to see that if the x-dependence is omitted, the same equation as in the one-

dimensional case is obtained from Eq. (39b), cf. Eq. (17). The second lowest order approximate boundary

conditions are obtained by neglecting all terms of order higher than h2, and finally in the third order all

terms of order higher than h3 are neglected. The second and third order approximate boundary conditions
are not shown explicitly here for brevity, but they are discussed together with some numerical examples in

Section 4. These higher order approximate boundary conditions are derived with the aid of the program

Mathematica (Wolfram, 1999) since the expressions get rather complicated.

4. Numerical examples

In this section, numerical examples are given for one-dimensional sensor and actuator cases and for two-

dimensional guided waves in a layered plate. The approximate boundary conditions derived in Section 3 are

used to obtain approximate solutions. Different order of truncation of the effective boundary conditions are

compared to each other as well as to the corresponding exact solutions. The main goal here is to investigate

the validity of the approximations.

In all the examples below, the piezoelectric material is taken as PZT-2 (lead zirconate titanate) and the

isotropic material is steel. The material properties of PZT-2 (class 6mm with the xy-plane as the plane of
isotropy) are given in Table 1 (Auld, 1990). The Lam�ee constants of the isotropic steel are k ¼ 121 GPa,

l ¼ 80:8 GPa (or Young�s modulus E ¼ 210 GPa and Poisson�s ratio m ¼ 0:3) and the density is qe ¼ 7870

kg/m3.

4.1. One-dimensional cases

In this section some numerical results for the one-dimensional sensor and actuator cases are presented.

Below, all fields are assumed to be time harmonic with the time dependence expð�ixtÞ. The factor
expð�ixtÞ is, however, suppressed throughout. Different order of approximate boundary conditions are

used in a simple actuator and sensor example to show their limitations.

Table 1

Material properties of PZT-2 (cIJ in GPa, eiI in C/m2, �0 ¼ 8:854	 10�12 C/Vm, and q in kg/m3)

c11 c12 c13 c33 c44 e15 e31 e33 �11=�0 �33=�0 q

135 67.0 68.1 113 22.2 9.8 )1.9 9.0 540 260 7600
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4.1.1. Actuator case

Fig. 2(a) shows an isotropic half-space coated by a piezoelectric layer of thickness h. A plane elastic wave
is induced in the half-space by applying a voltage U ¼ V1 to the upper (free) surface z ¼ h of the layer and a

voltage U ¼ V0 to the lower surface z ¼ 0 of the layer. In this section, the amplitude of the transmitted wave

(wðtÞ in the figure) obtained from the exact solution is compared to the amplitude obtained when the layer is

replaced by approximate boundary conditions of different orders.

The difference between the voltages at the layer�s surfaces, V1 � V0, is assumed to be

V1 � V0 ¼ DV : ð40Þ

The equations governing one-dimensional (time harmonic) motion in the isotropic half-space are

oT e
33

oz
þ qex2we ¼ 0; T e

33 ¼ ðk þ 2lÞ ow
e

oz
: ð41Þ

From Eq. (41) and radiation conditions at infinity, the total displacement field in the isotropic half-space is

we ¼ A2e
�ikez z; ð42Þ

where the wavenumber in the elastic half-space kez is given by

kez ¼ x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qe

k þ 2l

r
: ð43Þ

Note that the displacement field in the isotropic half-space consists of the transmitted field only, i.e., a plane

wave propagating in the negative z-direction.
In order to obtain the exact solution, i.e., the exact expression for A2, the displacement field and potential

in the piezoelectric layer are obtained from Eqs. (6b) and (10), assuming time harmonic conditions, as

w ¼ A1e
ikzz þ B1e

�ikzz; ð44Þ

U ¼ e33
�33

wþ C1zþ C2; ð45Þ

where kz is the wavenumber in the piezoelectric layer, i.e.,

kz ¼ x

ffiffiffi
q
�cc

r
: ð46Þ

The constants A1, B1, A2, C1, and C2 are determined by the actuator case boundary conditions Eq. (12). The

expression for the exact amplitude of the transmitted wave, A2, is given by

Fig. 2. A piezoelectric layer of thickness h acting as an actuator or a sensor.
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A2 ¼ 2i
e33
�33

sinðkzhÞ
 "

��cckzh
e33

cosðkzhÞ
!
ð�cckzð1� e�ikzhÞ� ðkþ 2lÞkez Þ

2�cckzð1� cosðkzhÞÞ
þ e33
�33

ðe�ikzh� 1Þþ i�cckzh
e33

e�ikzh

#�1

DV :

ð47Þ

Insertion of Eqs. (40) and (42) into the approximate boundary condition of lowest order (17) results in the

approximation

A2 ¼
e33�cchk2z

2c33ð�cchk2z þ ikez ðk þ 2lÞÞDV : ð48Þ

If the second lowest order boundary condition Eq. (18) is used, the result is

A2 ¼
3e33�cchk2z

6c33�cchk2z þ ikez ðk þ 2lÞð6c33 � h2k2z ð2�ccþ c33ÞÞ
DV ; ð49Þ

Finally, if Eqs. (40) and (42) are inserted into the approximate boundary condition of the third order Eq.

(19), the resulting amplitude A2 is

A2 ¼
e33�cchk2z ð12� h2k2z Þ

2�cchk2z ð12c33 � h2k2z ð�ccþ c33ÞÞ þ 4ikez ðk þ 2lÞð6c33 � h2k2z ð2�ccþ c33ÞÞ
DV : ð50Þ

If Eq. (47) is rewritten and the numerator and denominator are series expanded, truncations yield the
approximate expressions Eqs. (48)–(50).

The amplitude of the wave generated in the half-space, A2, for the actuator case is shown in Fig. 3.

a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c33=�33

p
A2=DV is plotted as a function of kzh in polar form, i.e., a2 ¼ ja2j expði argða2ÞÞ with ja2j in

Fig. 3(a) and argða2Þ in Fig. 3(b). The exact solution is shown together with the three lowest order of

approximations derived above. As is seen in the figure, the amplitude obtained from the first (lowest)

approximate boundary condition, Eq. (48), is only in good agreement with the exact amplitude when

kzh < 0:3. It is also seen that the phase is in better agreement than the absolute value. The second and third

approximate boundary conditions, Eqs. (49) and (50), offer significant improvements. The absolute value of
the amplitudes are in very good agreement with the exact one when kzh < 1. The phase of the second order

approximation, Eq. (49), starts to break down much earlier than the phase of the third order approxi-

mation, Eq. (50), (see Fig. 3(b)). From the figure, it is seen that the second order approximation starts to

break down when kzh � 0:5 and the third order approximation when kzh � 1.

Fig. 3. The absolute value and phase of a2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c33=�33

p
A2=DV .
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4.1.2. Sensor case

Here, the same configuration as in the previous subsection is considered but instead of inducing a wave

in the isotropic half-space by applying voltages to the layer�s surfaces, a plane wave incident in the half-

space (wðinÞ) is inducing a difference in the voltages V0 and V1 (see Fig. 2(b)). Comparisons between
DV ¼ V1 � V0 obtained from the exact solution and approximate boundary conditions of various orders are

made.

The displacement field in the elastic half-space may be written as the sum of the incident wave and the

reflected wave as (see Eq. (41))

we ¼ A0e
ikez z þ A2e

�ikez z: ð51Þ

The difference in the voltages DV ¼ V1 � V0 will now be determined using the exact equations as well as

different orders of approximate boundary conditions.

As in the previous section, the displacement field and the electric potential in the piezoelectric layer are

obtained from Eqs. (6b) and (10) as

w ¼ A1e
ikzz þ B1e

�ikzz; ð52Þ

U ¼ e33
�33

wþ C1zþ C2: ð53Þ

The constants A1, B1, A2, C1, and C2 are determined by the sensor case boundary conditions Eq. (20). The

exact expression for DV is then given by

DV ¼ 2e33ðk þ 2lÞkez ð1� cosðkzhÞÞ
�33ððk þ 2lÞkez cosðkzhÞ � i�cckz sinðkzhÞÞ

A0: ð54Þ

If Eq. (51) is inserted into the lowest order boundary condition, Eq. (26), and Eq. (30) is used, the difference

in the voltages, DV , is given by

DV ¼ e33ðk þ 2lÞkez k2z h2
�33ððk þ 2lÞkez � i�cck2z hÞ

A0: ð55Þ

The second lowest order boundary condition, Eq. (27), combined with the corresponding expression for

DV , Eq. (31), yield

DV ¼ 2e33ðk þ 2lÞkez k2z h2
�33ððk þ 2lÞkez ð2� k2z h

2Þ � 2i�cck2z hÞ
A0: ð56Þ

Finally, insertion of Eq. (51) into the third order boundary condition, Eq. (28), combined with Eq. (32)
result in the expression

DV ¼ e33ðk þ 2lÞkez k2z h2ð12� k2z h
2Þ

2�33ð3ðk þ 2lÞkez ð2� k2z h
2Þ � i�cck2z hð6� k2z h

2ÞÞA0: ð57Þ

It is easy to see that series expansions of the numerator and denominator in Eq. (54) and truncation to

different orders result in the approximate expressions Eqs. (55)–(57).

In Fig. 4, the absolute value and phase of Dv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�33=c33

p
DV =A0 are shown as a functions of kzh. The

same conclusions may be drawn from Figs. 3 and 4, the first approximation is valid up to kzh � 0:3, the
second order up to kzh � 0:5, and the third order up to kzh � 1.
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4.2. Two-dimensional case

In this section the two-dimensional approximate boundary conditions are evaluated. The calculations

are made for the case when two plates, one piezoelectric and one elastic, are perfectly bonded to each other.

Dispersion relations are calculated for different order of truncations when the electrodes are shorted, i.e.,
V0 ¼ V1 ¼ 0 (see Fig. 5). They are then compared to the exact solution, which is obtained from the two-

dimensional equations of piezoelectricity and elasticity. The thickness ratio of the piezoelectric layer and

the elastic plate is varied in order to show the limitations of the approximate boundary conditions.

The dispersion relation for the exact case is obtained by using the two-dimensional equations of motion,

Eq. (33), combined with the two-dimensional elastic equations of motion and the boundary/interface

conditions appropriate for this case. The equations of motion and constitutive relations for in-plane motion

of an isotropic, homogeneous elastic material are

oT e
11

ox
þ oT e

31

oz
¼ qe o

2ue

ot2
;

oT e
31

ox
þ oT e

33

oz
¼ qe o

2we

ot2
; ð58aÞ

T e
11 ¼ ðk þ 2lÞ ou

e

ox
þ k

owe

oz
; T e

31 ¼ l
oue

oz

�
þ owe

ox

	
; T e

33 ¼ k
oue

ox
þ ðk þ 2lÞ ow

e

oz
: ð58bÞ

ue is the displacement in the x-direction and we is the displacement in the z-direction in the elastic material.

k and l are the Lam�ee constants. The boundary conditions governing this case are

z ¼ h : T31 ¼ 0; T33 ¼ 0; U ¼ 0; ð59aÞ

z ¼ 0 : T31 ¼ T e
31; T33 ¼ T e

33; U ¼ 0; u ¼ ue; w ¼ we; ð59bÞ

Fig. 4. The absolute value and phase of Dv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�33=c33

p
DV =A0.

H

h

z

x y

Φ = 0

Φ = 0

Fig. 5. A piezoelectric layer with shorted electrodes perfectly bonded to an elastic plate.
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z ¼ �ðH � hÞ : T e
31 ¼ 0; T e

33 ¼ 0: ð59cÞ
Briefly, the exact dispersion relation is obtained as follows. First, general solutions are obtained in the
piezoelectric and elastic layers from Eqs. (33) and (58), respectively, assuming that all fields are in the form

F ðzÞ expðiðkxx� xtÞÞ. Then, the boundary and interface conditions Eq. (59) yield a homogeneous system of

equations for the unknown integration constants of the layers. The requirement that a non-trivial solution

should exist, i.e., that the determinant of the system matrix is zero, yields the exact dispersion relation.

When using the approximate boundary conditions, the piezoelectric layer is reduced to two approximate

boundary conditions that are applied to the elastic material. By doing this, the problem is reduced to

solving the equations of motion in the elastic plate, Eq. (58a), together with the boundary conditions

z ¼ 0 : T e
31 ¼ T eff

31 ; T e
33 ¼ T eff

33 ; ð60aÞ

z ¼ �ðH � hÞ : T e
31 ¼ 0; T e

33 ¼ 0: ð60bÞ
Above, T eff

31 and T eff
33 are the approximate boundary conditions replacing the piezoelectric layer with

V0 ¼ V1 ¼ 0 in this case. The lowest order approximate boundary conditions for the two-dimensional case

are given by Eq. (39). To obtain the dispersion relation, the procedure is the same as in the exact case. First,

a general solution is obtained in the elastic plate assuming that all fields are in the form

F ðzÞ expðiðkxx� xtÞÞ. When the general solution is inserted into the boundary conditions (60), the result is a

homogeneous system of equations for the integration constants. The requirement that a non-trivial solution

should exist, yields the dispersion relation.

In Fig. 6, the dispersion curves when h ¼ 0:1H are shown. Here it can be seen that even the first order

approximation is in excellent agreement with the exact solution for the first mode. For the second mode, the
first approximation is very good up to kxH ¼ 3 (kxh ¼ 0:3) but the second and third order approximation is

very good in the whole interval. All approximate solutions capture the cut-off frequency of the third mode

well, but the first and second order approximations are clearly not as good as the third order approximation

at higher frequencies.

In Fig. 7, h ¼ 0:2H , which makes the influence from the piezoelectric material greater and therefore the

results in this case are not expected to be as good as they are in Fig. 6. For the first mode it can be seen that

the first order approximation is very good up to at least kxH ¼ 3 (kxh ¼ 0:6). The third order approximation

is very good in the whole interval. For the second mode the first approximation is good up to kxH ¼ 1:75
(kxh ¼ 0:35), while the second approximation matches the exact curve well up to kxH ¼ 2:25 (kxh ¼ 0:45).

Fig. 6. Dispersion curves when h ¼ 0:1H .
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The third order approximation is very good in the whole interval. For the third mode it is seen that the first
approximation results in a fairly large error in the cut-off frequency and this is the case for the second and

third approximations as well, even if the errors are much smaller than the error in the first approximation.

The main reason for these relatively large errors in the third mode is that a significant portion of the plate is

modeled by the approximate boundary conditions, which are similar to using a plate theory. In order to

model the third mode more accurately, higher order approximate boundary conditions than the ones

considered in this paper should be used. See Bostr€oom et al. (2001) and Johansson (1999) for more thorough

discussions on higher order plate theory using derivation techniques similar to the one used in this paper.

Finally note that the main reason why the approximations appear to be much better when h ¼ 0:1H than
when h ¼ 0:2H for all modes is the scaling of the axes in Figs. 6 and 7. If the dispersion curves are viewed as

kxh versus kzh instead of kxH versus kzH , the approximations are about as good in both cases (h ¼ 0:1H and

h ¼ 0:2H ).

5. Conclusions

This paper has been discussing the derivation of approximate boundary conditions for a thin piezo-

electric layer. The derivation is performed by expanding the displacement and electric potential in power

series in the thickness coordinate. The displacement and potential are then inserted into the equations of

motion and the boundary conditions. From the equations of motion, unknown variables are eliminated.

Then the boundary conditions are used to eliminate further unknowns and finally a set of approximate

boundary conditions remains. This has been performed for both one-dimensional and two-dimensional
cases. The one-dimensional approximate boundary conditions have been developed both for a piezoelectric

actuator and a piezoelectric sensor.

The one-dimensional piezoelectric actuator placed on an isotropic half-space is considered in the first

numerical example. An elastic wave is induced in the half-space by applying a voltage difference to the

piezoelectric layer. The second numerical example is the one-dimensional piezoelectric sensor which also is

placed on an isotropic half-space. The difference between this case and the previous is that there is no

applied voltage. Instead there is an incident wave in the half-space that is inducing a voltage jump in the

piezoelectric layer. The third numerical example shows the dispersion curves obtained from using the two-
dimensional approximate boundary conditions. Here, a thin piezoelectric layer with shorted electrodes is

Fig. 7. Dispersion curves when h ¼ 0:2H .
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perfectly bonded to an elastic plate. The dispersion curves are calculated for different thickness ratios of the

piezoelectric layer and the elastic plate.

The numerical examples show the limitations of the approximate boundary conditions. It is shown that

the first order approximate boundary condition is good at low frequencies and thin piezoelectric layers, i.e.,
thin compared to the wavelength in the layer. Since many industrial applications are concerned with thin

piezoelectric layers and low frequencies, the lowest order approximate boundary conditions determined in

this paper can be used to simplify the calculations greatly. At higher frequencies, the second and third order

approximate boundary conditions work better. They are, however, more complicated which reduces the

benefit in using them.

The greatest benefit of using these boundary conditions is that the system of equations that needs to be

solved is smaller since the piezoelectric layer is completely eliminated and replaced by a set of boundary

conditions. An interesting use of the approximate boundary conditions could be to implement them in
FEM programs without the capability to handle piezoelectric materials.
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